Pedia News

Earth’s Structure


Earth’s Structure
As the mass of the Earth continued to grow, so did its internal pressure. This in partnership with the force of gravity and ‘shock heating’ – see boxout opposite for an explanation – caused the heavier metallic minerals and elements within the planet to sink to its centre and melt. Over many years, this resulted in the development of an iron-rich core and, consequently, kick-started the interior convection which would transform our world.

Once the centre of Earth was hot enough to convect, planetary differentiation began. This is the process of separating out different elements of a planetary body through both physical and chemical actions. Simply put, the denser materials of the body sink towards the core and the less dense rise towards the surface. In Earth’s case, this would eventually lead to the distinct layers of inner core, outer core, mantle and crust – the latter developed largely through outgassing.
Outgassing in Earth occurred when volatile substances located in the lower mantle began to melt approximately 4.3 billion years ago. This partial melting of the interior caused chemical separation, with resulting gases rising up through the mantle to the surface, condensing and then crystallising to form the first crustal layer. This original crust proceeded to go through a period of recycling back into the mantle through convection currents, with successive outgassing gradually forming thicker and more distinct crustal layers.
The precise date when Earth gained its first complete outer crust is unknown, as due to the recycling process only incredibly small parts of it remain today. Certain evidence, however, indicates that a proper crust was formed relatively early in the Hadean eon (4.6-4 billion years ago). The Hadean eon on Earth was characterised by a highly unstable, volcanic surface (hence the name ‘Hadean’, derived from the Greek god of the underworld, Hades). Convection currents from the planet’s mantle would elevate molten rock to the surface, which would either revert to magma or harden into more crust.
Scientific evidence suggests that outgassing was also the primary contributor to Earth’s first atmosphere, with a large region of hydrogen and helium escaping – along with ammonia, methane and nitrogen – considered the main factor behind its initial formation. By the close of the Hadean eon, planetary differentiation had produced an Earth that, while still young and inhospitable, possessed all the ingredients needed to become a planet capable of supporting life. But for anything organic to develop, it first needed water…
Magnetic field in the making
Earth’s geomagnetic field began to form as soon as the young planet developed an outer core. The outer core of Earth generates helical fluid motions within its electrically conducting molten iron due to current loops driven by convection. As a result, the moment that convection became possible in Earth’s core it began to develop a geomagnetic field – which in turn was amplified by the planet’s rapid spin rate. Combined, these enabled Earth’s magnetic field to permeate its entire body as well as a small region of space surrounding it – the magnetosphere.

Earth’s Structure, Magnetic field in the making