Pedia News

Membrane Potentials


Membrane Potentials
Electrochemical potentials are present across the membranes of virtually all cells in the body. Some cells, such as nerve and muscle cells, are capable of generating rapidly changing electrical impulses, and these impulses are used to transmit signals along their membranes. In other cells, such as glandular cells, membrane potentials are used to signal the release of hormones or activate other functions of the cell. Generation of membrane potentials relies on (1) diffusion of current-carrying ions, (2) development of an electrochemical equilibrium, (3) establishment of a RMP, and (4) triggering of action potentials.
Diffusion Of Current-Carrying Ions
A diffusion potential is a potential difference generated across a membrane when a current-carrying ion, such as the potassium (K+) ion, diffuses down its concentration gradient. Two conditions are necessary for this to occur: (1) the membrane must be selectively permeable to a particular ion, and (2) the concentration of the diffusible ion must be greater on one side of the membrane than the other.
The magnitude of the diffusion potential, measured in millivolts, depends on the size of the concentration gradient. The sign (+ or −) or polarity of the potential depends on the diffusing ion. It is negative on the inside when a positively charged ion such as K+ diffuses from the inside to the outside of the membrane, carrying its charge with it.
Diffusion Of Current-Carrying Ions

Equilibrium Potentials
An equilibrium potential is the membrane potential that exactly balances and opposes the net diffusion of an ion down its concentration gradient. As a cation diffuses down its concentration gradient, it carries its positive charge across the membrane, thereby generating an electrical force that will eventually retard and stop its diffusion. An electrochemical equilibrium is one in which the chemical forces driving diffusion and the repelling electrical forces are exactly balanced so that no further diffusion occurs. The equilibrium potential (EMF, electromotive force) can be calculated by inserting the inside and outside ion concentrations into the Nernst equation.
Equilibrium Potentials

Resting Membrane Potential
The RMP, which is necessary for electrical excitability, is present when the cell is not transmitting impulses. Because the resting membrane is permeable to K+, it is essentially a K+ equilibrium potential. This can be explained in terms of the large K+ concentration gradient (e.g., 140 mEq/L inside and 4 mEq/L outside), which causes the positively charged K+ to diffuse outward, leaving the nondiffusible, negatively charged intracellular anions (A) behind. This causes the membrane to become polarized, with negative charges aligned along the inside and positive charges along the outside. The Na+/K+ membrane pump, which removes three Na+ from inside while returning only two K+ to the inside, contributes to the maintenance of the RMP.

Action Potentials
Action potentials involve rapid changes in the membrane potential. Each action potential begins with a sudden change from the negative RMP to a positive threshold potential, causing an opening of the mem- brane channels for Na+ (or other ions of the action potential). Opening of the Na+ channels allows large amounts of the positively charged Na+ ions to diffuse to the interior of the cell, causing the membrane potential to undergo depolarization or a rapid change to positive on the inside and negative on the outside. This is quickly followed by closing of Na+ channels and opening of the K+ channels, which leads to a rapid efflux of K+ from the cell and reestablishment of the RMP.
Action Potentials