Breaking News

Female Reproduction: III Pregnancy


Female Reproduction: III Pregnancy
Fertilization and implantation
The ovum and sperm pronuclei fuse to form the zygote, which now has the normal diploid chromosomal number (Fig. 27a). The zygote divides mitotically as it travels along the uterine tube, and at about 3 days after fertilization enters the uterus, when it is now a morula. The cells of the morula continue to divide to form a hollow sphere, the early blastocyst, consisting of a single layer of trophoblast cells and the embryoblast, an inner core of cells which will form the embryo. The trophoblast, after implantation, will form the vascular interface with the maternal circulation. After around 2 days in the uterus, the blastocyst is accepted by the endometrial epithelium under the influence of estrogens, progesterone and other endometrial factors. This embedding or implantation process triggers the ‘decidual response’, involving an expansion of a space, the decidua, to accommodate the embryo as it grows. The invasive trophoblast proliferates into a protoplasmic cell mass called a syncitiotrophoblast, which will eventually form the uteroplacental circulation. By about 10 days, the embryo is completely embedded in the endometrium.

If the ovum is fertilized and becomes implanted, the corpus luteum does not regress, but continues to secrete progesterone, and within 10–12 days after ovulation the syncitiotrophoblast begins to secrete human chorionic gonadotrophin (hCG) into the intervillous space. Most pregnancy tests are based on the detection of hCG, which takes over the role of luteinizing hormone (LH) and stimulates the production of progesterone, 17-hydroxyprogesterone and estradiol by the corpus luteum. Plasma levels of hCG reach a peak between the ninth and four-teenth week of pregnancy, when luteal function begins to fade, and by 20 weeks, both luteal function and plasma hCG have declined.
The syncitiotrophoblast secretes another hormone, human placental lactogen (hPL), whose plasma levels in the maternal circulation (but not in that of the fetus) rise concomitantly with placental growth. Its function may be to inhibit maternal growth hormone production, and it has several metabolic effects, notably glucose-sparing and lipolytic, possibly through its anti-insulin effects. As a result, the placenta ensures a plentiful supply of glucose, free fatty acids and amino acids for the fetus.
The corpus luteum synthesizes relaxin, which relaxes the uterine muscle. The hormone is detected in the ovarian venous drainage, is present throughout pregnancy, rising in late gestation, but is rarely found in the plasma of non-pregnant women. Relaxin targets the pubic symphysis, that is the point of fusion of the pubic bones, and softens this by converting the connec- tive tissues from a hard to a more fluid consistency. This will facilitate the widening of the pubis to allow the fetus to pass through. Relaxin achieves this effect by increasing the secretion of two enzymes, collagenase and plasminogen activator, both of which dissolve collagen. In late pregnancy, relaxin may be synthesized by the myometrium, the decidua (the mucous membrane which lines the pregnant uterus) and by the placenta.
The placenta, which takes over the production of the hormones of pregnancy from the corpus luteum, is part of what is termed the fetoplacental unit. The placenta attains its mature structure by the end of the first trimester of pregnancy. Its functional unit is the chorionic villus, consisting of a central core of loose connective tissue, packed with capillaries which communicate with the fetal circulation. Around the core are two layers of trophoblast, an inner layer of cytotrophoblast cells and an outer syncytium. The placenta is not only an endocrine organ, but also provides nutrients for the developing fetus and removes its waste products. The fetoplacental unit produces many of the hormones released by the hypothalamic–pituitary– gonadal axis.

Female Reproduction: III Pregnancy, Fertilization and implantation, human chorionic gonadotrophin, Steroidogenesis,

Steroidogenesis
Progesterone concentrations rise progressively during pregnancy, and a major function of the hormone is thought to be its action, together with relaxin, to inhibit uterine motility, partly by decreasing its sensitivity to oxytocin (Fig. 27b). The placenta lacks 17-hydroxylase and therefore cannot produce androgens. This is done by the fetal adrenal glands, and the androgens thus formed are the precursors of the estrogens. The placenta converts maternal and fetal dehydroepiandrosterone sulphate (DHEA-S) to testosterone and androstenedione, which are aromatized to estrone and estradiol.
Another enzyme lacking in the placenta is 16-hydroxylase, so the placenta cannot directly form estriol and needs DHEA-S as substrate. Estriol formed by the placenta (Fig. 27c) passes into the maternal circulation, where it is conjugated in the liver to form the more soluble estriol glucuronides, which are excreted in the urine, and levels of estriol are used as an index of normal fetal development. If the fetus lacks a pituitary gland, no ACTH is produced and no DHEA-S, and therefore no estriol. The consequences of estriol deficiency are delayed labour and intrauterine death, unless caesarean section is carried out. Such mothers are resistant to oxytocin administration, suggesting a deficiency of oxytocin receptors, which are normally induced at term by estradiol. Another important role of estrogens is to stimulate the steady rise in maternal plasma prolactin. Prolactin, which is the postpartum lactogenic hormone, may serve in pregnancy to regulate storage and mobilization of fat, and to aid in maintaining metabolic homeostasis during pregnancy.

No comments